The Temperly-Lieb algebra:
generated by $E_{i}$ with $i=1, \ldots, n-1$ satisfying

$$
\begin{aligned}
E_{i} E_{j} & =E_{i} E_{i}, \text { for }|i-j| \geqslant 2, \\
E_{i} E_{i \pm 1} E_{i} & =E_{i} \\
E_{i}^{2} & =d E_{i}
\end{aligned}
$$

Next, want to embed the braid group $B_{n}$ in to $T \operatorname{Ln}(d)$
$\rightarrow$ define $\rho_{A}\left(\sigma_{i}\right)=A E_{i}+A^{-1} \mathbb{1}$

$$
\text { and } \rho_{A}\left(\sigma_{i}^{-1}\right)=A^{-1} E_{i}+A \mathbb{1}
$$

Then check:
1)

$$
\begin{aligned}
\rho_{A}\left(\sigma_{i}\right) \rho_{A}\left(\sigma_{i}^{-1}\right) & =\left(A E_{i}+A^{-1} \mathbb{1}\right)\left(A^{-1} E_{i}+A \mathbb{1}\right) \\
& =E_{i}^{2}+A^{2} E_{i}+A^{-2} E_{i}+\mathbb{1} \\
& =d E_{i}-d E_{i}+\mathbb{1}=\mathbb{U}
\end{aligned}
$$

2) For $|i-j| \geqslant 2$ compute

$$
\begin{aligned}
\rho_{A}\left(\sigma_{i}\right) \rho_{A}\left(\sigma_{j}\right) & =\left(A E_{i}+A^{-1} \mathbb{1}\right)\left(A E_{j}+A^{-1} y\right) \\
& =\left(A E_{j}+A^{-1} \|\right)\left(A E_{i}+A^{-1} \|\right) \\
& =\rho_{A}\left(\sigma_{j}\right) \rho_{A}\left(\sigma_{i}\right)
\end{aligned}
$$

3) 

$$
\begin{aligned}
& \rho_{A}\left(\sigma_{i}\right) \rho_{A}\left(\sigma_{i+1}\right) \rho_{A}\left(\sigma_{i}\right) \\
= & A^{3} E_{i} E_{i+1} E_{i}+A E_{i+1} E_{i}+A E_{i}^{2}+A^{-1} E_{i}
\end{aligned}
$$

$$
\begin{aligned}
& +A E_{i} E_{i+1}+A^{-1} E_{i+1}+A^{-1} E_{i}+A^{3} \\
= & \left(A^{3}+A d+A^{-1}\right) E_{i}+2 A E_{i} E_{i+1}+A^{-1}\left(E_{i}+E_{i+1}\right)+A^{3} \\
= & \rho_{A}\left(\sigma_{i}\right) \rho_{A}\left(\sigma_{i+1}\right) \rho_{A}\left(\sigma_{i}\right)
\end{aligned}
$$

where we used $A^{3}+A d+A^{-1}=0$
$\rightarrow \rho\left(\sigma_{i}\right)$ is a representation of the braid group generators.
If we take $|A|=1$ and Ii Hermitian for all $i$, we get

$$
\begin{aligned}
\rho\left(\sigma_{i}\right) \rho\left(\sigma_{i}\right)^{\dagger} & =\left(A E_{i}+A^{-1} \mathbb{1}\right)\left(A^{*} E_{i}^{\dagger}+\left(A^{-1}\right)^{*} \mathbb{1}\right) \\
& =E_{i}{ }^{2}+\left(A^{2}+A^{-2}\right) E_{i} \\
& =\underline{Y}
\end{aligned}
$$

$\rightarrow \rho\left(\sigma_{i}\right)$ is unitary!
Markov trace and Jones polynomials
The Markov trace is defined as taking the trace over the representation $\rho_{A}(b)$ of $a$ braid word $b \rightarrow$ number (polynomial in A)
$\rightarrow$ pictorially, this number corresponds
to a link $L=(b)^{\text {Markov }}$


We denote the Markov trace of a product of elements of $T L_{n}(d)$ by $K$

where $n=$ \#points at hor. side of $k$

$$
a=\# \text { loops }
$$

Markov trace has following properties:
a) $\operatorname{tr}(\mathbb{1})=1$,
b) $\operatorname{tr}(X Y)=\operatorname{tr}(y X)$, for any $x, y \in T L_{n}(d)$
c) $\operatorname{tr}\left(X E_{n-1}\right)=\frac{1}{d} \operatorname{tr}(X)$, for any $X \in T L_{n-1}(d)$

Indeed, the trace of the Kauffimann diagram of $\mathbb{I}$ gives $a=n$ loops $\rightarrow$ a)


At last, removing a single En -1 element produces a loop $\rightarrow$ c)
Have the following identity:

$$
\begin{aligned}
d^{n-1} \operatorname{tr}\left(\rho_{A}(b)\right) & =\left\langle(b)^{\text {Markov }}\right\rangle(A) \\
& =\langle L\rangle:=\sum_{\{S\}} d^{|s|-1} A^{s^{+}-s^{-}}
\end{aligned}
$$

Proof: $2^{N}$ configurations where $N=\#$ crossings
This follows from

$$
\left.\sigma_{i} \nrightarrow A \bigcap_{E_{i}}^{\bigcup}+A^{-1}\right)(
$$

$\operatorname{tr}\left(\rho_{A}(b)\right)$ produces $d^{a-n} E_{i}$ which together with $d^{n-1}$ gives $d^{a-1}=d^{|s|-1}$ as $|s|=a$ $\rightarrow$ write Jones pol as $V_{L}(A)=(-A)^{3 n(L)} d^{n-1} \operatorname{tr}\left(P_{A}(b)\right)$

Path-model representation of TL algebra
Suppose $G$ is a one-dimensional graph with $k$ vertices labeled by $1, \ldots, k$ and $k-1$ edges.

$\rightarrow$ consider on n step walk on $G$ starting from left endpoint
$\rightarrow$ denote path by $p=\left(\nu_{1}, \ldots, \nu_{n}\right)$ where $\nu_{1}=1$ and $\nu_{j}=0$ or $\nu_{j}=1$ $\begin{array}{cc}\uparrow & \begin{array}{c}\text { T } \\ \text { mo ne } \\ \text { left } \\ \text { move } \\ \text { right }\end{array}\end{array}$
$\rightarrow$ define Hilbert space $H_{n, k}$ spanned by all possible paths as a basis $\{|p\rangle\}$.
For each generator $E_{i} \in T L_{n}(d)$ define representation $\Phi_{i}=\rho\left(E_{i}\right)$ as follows:

$$
\begin{aligned}
& \left.\Phi_{i} \mid \cdots v_{i-1} \text { oo } v_{i+1} \cdots\right\rangle=0, \\
& \left.\Phi_{i}\left|\ldots \nu_{i-1} 0\right| \nu_{i+1} \cdots\right\rangle=\frac{\lambda z_{i}-1}{\lambda_{z_{i}}}\left|\cdots \nu_{i-1} O\right| \nu_{i+1}, \cdots \\
& \left.+\frac{\sqrt{\lambda_{z_{i}+1} \lambda_{z_{i}-1}}}{\lambda_{z_{i}}}\left|\cdots \nu_{i-1}\right| 0 \nu_{i+1}\right\rangle \\
& \left.\Phi_{i}\left|\cdots v_{i-1}\right| 0 \nu_{i+1} \cdots\right\rangle=\frac{\lambda_{z_{i}+1}}{\lambda_{z_{i}}}\left|\cdots \nu_{i-1} 10 v_{i+1} \cdots\right\rangle \\
& \left.\left.+\frac{\sqrt{\lambda_{z_{i}+1} \lambda_{z_{i}-1}}}{\lambda_{z_{i}}} \right\rvert\, \cdots \nu_{i-1} \text { lv } \nu_{i+1}\right\rangle \\
& \Phi_{i}\left|\cdots v_{i-1}\right|\left|v_{i+1} \cdots\right\rangle=0,
\end{aligned}
$$

where $z_{i} \in\{1, \ldots, k\}$ is the vertex label at the ith step and $\lambda_{j^{\prime}}=\sin (j \theta)$ with $\theta=\pi / k$.
$\rightarrow$ induced representation

$$
\chi p\left(\sigma_{i}\right)=A \Phi_{i}+A^{-1} \mathbb{1} \quad \text { of } \underset{B_{n}}{B_{n}} \text { braid group }
$$

Setting $A=i e^{-i \theta / 2}$ and $d=2 \cos \theta$ gives
hermitian $E_{i}$ for all
$\rightarrow \widetilde{\sim}\left(G_{i}\right)$ is unitary for this choice acting on neighboring two-qubit
$\rightarrow$ can be implemented by universal quantum computer
By the Hadamard test, the Jones polynomial can be evaluated as a trace with an additive error $\Delta 2^{n} \mathcal{E}$ taking poly ( $n, m, k, 1 / \Sigma$ ) overhead, where $m$ is \#crossings.
Taking the plat closure,

deform

$\rightarrow$ the support of $\rho(b)$ is only on $|10101 \ldots\rangle$
$\rightarrow$ replace matrix trace by

$$
V_{b e t}\left(A^{-4}\right)=\Delta_{\text {pet }}\langle 10101 \cdots| p(b)|10101 \cdots\rangle
$$

where $b^{\text {pet }}$ is a link generated from braiding $b$ with plat closure and $\Delta_{\text {pet }}=(-A)^{3 \omega\left(b^{p e t}\right)} d^{n / 2-1}$ Hadamard $\xrightarrow{\text { test }}$ estimate $V_{b p e t}\left(A^{-4}\right)$ with additive error $\Delta_{\text {pet }} \Sigma$ taking

$$
\text { poly }\left(n, m, k, \frac{1}{\Sigma}\right) \text { time }
$$

